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Abstract— A sparse representation-based classifier (SRC) is
developed and shows great potential for real-world face recog-
nition. This paper presents a dimensionality reduction method
that fits SRC well. SRC adopts a class reconstruction residual-
based decision rule, we use it as a criterion to steer the design
of a feature extraction method. The method is thus called
the SRC steered discriminative projection (SRC-DP). SRC-DP
maximizes the ratio of between-class reconstruction residual to
within-class reconstruction residual in the projected space and
thus enables SRC to achieve better performance. SRC-DP pro-
vides low-dimensional representation of human faces to make the
SRC-based face recognition system more efficient. Experiments
are done on the AR, the extended Yale B, and PIE face image
databases, and results demonstrate the proposed method is more
effective than other feature extraction methods based on the SRC.

Index Terms— Dimensionality reduction, discriminant analysis,
face recognition, feature extraction, sparse representation.

I. INTRODUCTION

FACE recognition aroused broad interests in pattern recog-
nition and computer vision areas in the past 20 years.

Simultaneously, numerous face representation and classifica-
tion methods are developed [1]. Recently, Wright et al. [2]
presented a sparse representation-based classification (SRC)
method. Xu et al. [27] suggested a two-phase test sam-
ple sparse representation method. He et al. [39] proposed
a two-stage sparse representation for robust recognition on
large-scale databases. Borrowing the idea of robust statistics,
He et al. [40], [41] presented iteratively robust sparse repre-
sentation methods for pattern recognition tasks. Yang et al.
[31] gave a robust sparse coding method for face recognition.
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All of these sparsity-based methods are applied to real-world
face recognition problems and demonstrate to be very effective
and robust to varying expression and illumination as well as
occlusion and disguise. The basic idea of SRC is to represent
a given test sample as a sparse linear combination of all
training samples; the sparse nonzero representation coefficients
are supposed to concentrate on the training samples with the
same class label as the test sample. Yang et al. [32] gave an
insight into SRC and provided some theoretical supports for
its effectiveness. Zhang et al. [45] argued that the collaborative
representation strategy plays a more important role than the
L1-norm-based sparsity constraint and presented a collabora-
tive representation classifier (CRC), which is computationally
more efficient. CRC, however, does not provide a mechanism
for noise removing, so it is not a robust method for face
recognition.

Sparse representation involves an underdetermined system
of linear equation y = Aw, where A ∈ RN×M and N < M .
For SRC, the columns of matrix A are all training sample
vectors. To obtain a sparse solution, the dimension of feature
vectors should be smaller than the number of training samples.
To deal with small sample problems like face recognition,
where the dimension of images is larger than the training
sample size, a dimensionality reduction (feature extraction)
step becomes necessary before implementing SRC. Wright [2]
showed that the choice of features is not critical, as long as the
sparse representation is correctly computed and the number
of features is sufficiently large. But, when the number of
features is relatively small, there exist remarkable performance
differences between different feature extraction methods.
A small amount of representation features is preferable for the
real-world face recognition problems, because it can reduce the
storage requirements and improve the classification efficiency.
So, the goal of this paper is to explore a method that can use
a small amount of representation features to achieve better
performance using SRC.

By far, numerous dimensionality reduction methods are
developed for face representation. In addition to the most
well-known methods like principal component analysis (PCA)
and Fisher linear discriminant analysis (FLDA) [3], [4], a
family of kernel-based and manifold learning-related methods
aroused wide research interests. Yang et al. [33] proposed
a complete kernel Fisher discriminant framework for feature
extraction. Cevikalp et al. [34] presented a discriminative
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common vector method with kernels. Zafeiriou et al. [35]
suggested a regularized kernel discriminant analysis method
for face recognition and verification. Kim and Kittler [5]
presented the locally linear discriminant analysis for multi-
modally distributed classes. He et al. [6] proposed a method
called locality preserving projections (LPP) and applied to face
representation. Chen et al. [7] suggested the local discriminant
embedding and its two variants. Yan et al. [8] provided a graph
embedding-based dimensionality reduction framework with
marginal Fisher analysis. Cai et al. [10], [11] presented the
orthogonal Laplacianfaces and a spatially smooth subspace for
face recognition. Fan et al. [36] proposed a sample neighbors-
based local linear discriminant analysis framework.

Recently, the idea of sparse representation is used to design
some feature extraction methods. Qiao et al. [9] presented
the sparsity preserving projections (SPP) method, which uses
all training samples to sparsely represent a given sample and
seeks a linear projection such that the sparse representation
coefficients are preserved. Zhang et al. [44] recently presented
a graph optimization for dimensionality reduction with sparsity
constraints (GODRSC). GODRSC aims to simultaneously
seek the sparse representation coefficients and the projection
matrix. GODRSC essentially learns a sparse relationship graph
in the transformed space, thus it can be viewed as an extension
of SPP. Clemmensen et al. [28] provided a sparse linear
discriminant analysis (SLDA), which imposes a sparseness
constraint on projection vectors. The sparse projection vector
yields a set of interpretable features for classification. Lai et al.
[29] suggested a sparse version of the 2-D local discriminant
projections (S2DLDP), which provides an intuitive, semantic,
and interpretable feature subspace for face representation.
They also showed that the optimal sparse subspace approx-
imates to the eigen subspace that is obtained by solving a
generalized eigenfunction [30]. Wang et al. [37] presented
a sparse tensor discriminant analysis method for color space
learning and face verification. He et al. [42], [43] presented
the nonparametric maximum entropy criterion-based PCA and
discriminant analysis for robust feature extraction.

All feature extraction methods, however, have no direct
connection to SRC. In this paper, our goal is to develop a fea-
ture extraction method fitting SRC well. Observing that SRC
adopts a class reconstruction residual-based decision rule, we
use it as a criterion to steer the design of a feature extraction
method, which is thus coined the SRC steered discriminative
projection (SRC-DP). The basic idea of SRC-DP is to seek
a linear transformation such that in the transformed low-
dimensional space, the within-class reconstruction residual is
as small as possible and simultaneously the between-class
reconstruction residual is as large as possible. Therefore, SRC
can achieve better classification performance in the SRC-DP
transformed space.

Compared with existing dimensionality reduction methods,
SRC-DP has the following advantages. Initially, the proposed
method has a natural connection to pattern classification.
The SRC-DP-based feature extractor and the SRC can be
seamlessly integrated into a face recognition system. Secondly,
similar to GODRSC [44], the proposed method characterizes
scatters of samples in the low-dimensional transformed space

where the classifier practically works, thus it can achieve
desirable classification performance. The classical FLDA also
characterizes scatters of samples in the transformed space.
But, most existing locality (or sparsity)-characterization-based
discriminant analysis methods [6]–[11] are designed-based on
scatters of samples in the input space. This is because the
locality (or sparsity) relationship of samples, unlike the popu-
lation mean or class mean of FLDA, might be changed after a
linear transformation. This scatter characterization in the input
space cannot guarantee good performance of classifiers in the
transformed space.

This paper is an extended version of our interna-
tional conference on pattern recognition (ICPR) paper [38].
In contrast, in this paper, we provide an initialization method,
discuss the convergence of the iterative SRC-DP algorithm,
and show the connections to other sparse feature extraction
methods. We also present a flexible version of SRC-DP, and
further suggest an extended SRC-DP method that provides a
mechanism to deal with occlusion or corruption. In addition,
more experiments are done to evaluate the effectiveness of the
proposed method R

d×Mi .

II. SPARSE REPRESENTATION-BASED CLASSIFIER

If there are c known pattern classes. Let Ai be the
matrix formed by the training samples of class i, i.e., Ai =
[yi1, yi2, . . . , yi Mi ] ∈ R

d×Mi where Mi is the number of
training samples of class i. Let us define a matrix A =
[A1, A2, . . . , Ac] ∈ R

d×M , where M = ∑c
i=1 Mi . The matrix

A is obviously composed of entire training samples.
Given a test sample y, we represent y in an overcomplete

dictionary whose basis vectors are training sample themselves,
i.e., y = Aw. If the system of linear equation is underde-
termined (N < M), this representation is naturally sparse.
The sparsest solution can be sought by solving the following
optimization problem

(L0) ŵ0 = arg min ||w||0, subject to Aw = y (1)

where || · ||0 is the L0-norm, which counts the number of
nonzero entries in a vector.

Solving L0 optimization problem in (1), however, is NP hard
and extremely time-consuming. Fortunately, recent research
efforts reveal that for certain dictionaries, if the solution ŵ0
is spare enough, finding the solution of the L0 optimization
problem is equivalent to finding the solution to the following
L1 optimization problem [12], [13]

(L1) ŵ1 = arg min || w||1, subject to Aw = y. (2)

This problem can be solved in polynomial time by standard
linear programming algorithms [14]. A more efficient algo-
rithm, e.g., the homotopy algorithm that has a computational
complexity that is linear to the size of the training set, is
available recently [15].

After the sparsest solution ŵ1 is obtained, the SRC can
be done in the following way [2]. For each class i, let
δi : R

M → R
M be the characteristic function that selects

the coefficients associated with the ith class. For w ∈ R
M ,

δi (w) is a vector whose only nonzero entries are the entries in
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w that are associated with class i. Using only the coefficients
associated with the ith class, one can reconstruct a given test
sample y as vi = Aδi (ŵ1). vi is called the prototype of class i
with respect to the sample y. The distance (residual) between
y and its prototype vi of class i are defined by

ri (y) = ||y − vi||2 = ||y − Aδi (ŵ1)||2. (3)

The SRC decision rule is: if rl(y) = min
i

ri (y), y is assigned

to class l.

III. SPARSE REPRESENTATION CLASSIFIER STEERED

DISCRIMINATIVE PROJECTION

Here, we first present the SRC-DP method, put forward an
iterative SRC-DP algorithm and suggest a good initial solution
for it. Then, we discuss the convergence of the iterative
SRC-DP algorithm, provide a flexible version of SRC-DP, and
reveal the connections between SRC-DP and SPP. Finally, we
suggest a way to deal with the rank-deficiency problem of
SRC-DP as applied to face recognition.

A. SRC-DP: Basic Idea and Algorithm

Let B = [B1, B2, . . . , Bc] ∈ RN×M be the training data
matrix in the input space, where Bi = [xi1, xi2, . . . , xi Mi ] ∈
R

N×Mi is the matrix formed by the training samples of class i.
Under a linear transformation y = PT x, each data point xi j in
input space R

N is mapped into yi j = PT xi j in a d-dimensional
space R

d . As a result, the data matrix in the input space is
converted into the one in R

d , that is, A = PT B.
Now consider the classification problem using SRC in the

mapped d-dimensional space. For each training sample yi j ,
leave it out from the training set and use the remaining training
samples to linearly represent it. By solving the L1 optimiza-
tion problem in (2), we obtain a representation coefficient
vector wi j . Let δs(wi j ) be the representation coefficient vector
with respect to class s. Then, the prototype of class s with
respect to the sample yi j is vs

i j = Aδs(wi j ), s = 1, . . . , c.
The distance between yi j and class s is defined as

ds(yi j ) =
∥
∥
∥yi j − vs

i j

∥
∥
∥

2
. (4)

Considering the decision rule of SRC, to make the classifier
perform well, yi j is as close as possible to its within-class
prototype vi

i j and simultaneously as far away as possible from
its between-class prototypes vs

i j (s �= i). That is, the within-
class distance di (yi j ) is supposed to be as small as possible
and the between-class distance ds(xi j ) for each s �= i as large
as possible. To make SRC achieve good performance on all
training samples, we would like to characterize the average
within-class and between-class distances, i.e., the within-
class and between-class scatters. Specifically, the within-class
scatter is defined as follows:

1
M

∑

i, j
di (yi j ) = 1

M

∑

i, j

∥
∥
∥yi j − vi

i j

∥
∥
∥

2

= 1
M

∑

i, j
(yi j − vi

i j )
T (yi j − vi

i j )

= tr(S̃L
w) (5)

where S̃L
w = 1/M

∑
i, j (yi j − vi

i j )
T (yi j − vi

i j ) is the within-
class scatter matrix in the transformed space and tr(·) is the
trace operator.

The between-class local scatter of samples is defined as
follows:

1
M(c−1)

∑

i, j

∑

s �=i
ds(yi j ) = 1

M(c−1)

∑

i, j

∑

s �=i

∥
∥
∥yi j − vs

i j

∥
∥
∥

2 = tr(S̃L
b )

(6)
where S̃L

b = 1/M(c − 1)
∑

i, j
∑

s �=i (yi j − vs
i j )(yi j − vs

i j )
T is

the between-class scatter matrix in the transformed space.
According to the SRC decision rule, larger between-class

scatter and smaller within-class scatter will lead to better
classification results in an average sense. Therefore, we can
choose to maximize the following criterion function:

J (P) = tr(S̃L
b )

tr(S̃L
w)

. (7)

Now, consider how to determine a projection matrix P-based
on the criterion. Finally, we try to convert the criterion to be
a function with respect to P.

Inserting yi j = PT xi j , A = PT B, and vs
i j = Aδs(wi j ) into

the formula of S̃L
w and S̃L

b , respectively, we have

S̃L
w = 1

M

∑

i, j
[PT xi j − PT Bδi (wi j )][PT xi j − PT Bδi (wi j )]T

= PT SL
wP (8)

S̃L
b = 1

M(c−1)

∑

i, j

∑

s �=i
[PT xi j − PT Bδs(wi j )]

×[PT xi j − PT Bδs(wi j )]T

= PT SL
b P (9)

where the two matrices SL
w and SL

b are defined as

SL
w = 1

M

∑

i, j
[xi j − Bδi (wi j )][(xi j − Bδi (wi j )]T (10)

and

SL
b = 1

M(c−1)

∑

i, j

∑

s �=i
[xi j − Bδs(wi j )][xi j − Bδs(wi j )]T . (11)

SL
w and SL

b are called the within-class and between-class sparse
scatter matrices, respectively.

The criterion in (7) thereby becomes

J (P) = tr(PT SL
b P)

tr(PT SL
wP)

. (12)

If the two matrices SL
w and SL

b can be constructed directly in
the input space and SL

w is nonsingular, the optimal projection
matrix P can be determined by maximizing the criterion
in (12). Generally, we add the constraint PT SL

wP = I such that
the extracted features are uncorrelated [21]. Then, the column
vectors of the optimal projection matrix can be chosen as the
generalized eigenvectors of SL

b ϕ = λ SL
wϕ corresponding to

d largest eigenvalues. However, the representation coefficient
vector wi j in the formula of SL

w and SL
b is unknown to us

without the projection matrix P being given in advance, wi j

is calculated in the transformed space R
d .

In summary, given an initial projection matrix P0 in
advance, we can map the data xi j in the input space into
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Yes

No

Choose an initial projection
matrix 0PP =

Set k = 1

In the transformed space, calculate the 
sparse representation coefficient vector 

ijw for each training sample

k = k + 1
εJJJ kkk <− ? )(/)]()([ 1 PPP ?

kPP =*

Construct L
bS and L

wS , calculate their 
generalized eigenvectors corresponding to 

the d largest eigenvalue to form kP

Fig. 1. Overview of iterative SRC-DP algorithm.

yi j = PT
0 xi j in the transformed space. Representing each

point yi j using the remaining training samples and obtain
the representation coefficient vector wi j by solving the L1
optimization problem. We then can construct the matrices SL

w
and SL

b in the input space and obtain a new projection matrix
P1 by solving the corresponding generalized eigenvalue prob-
lem. Based on this idea, we can derive an iterative SRC-DP
algorithm. In the kth iteration of the algorithm, we use Pk−1,
the resulting projection matrix after the (k-1)th iteration, as
the initial projection matrix to input the system to yield a new
projection matrix Pk . The iteration procedure continues until
the algorithm converges. Convergence may be determined by
observing when the value of the criterion function J (P) in
(12) stops changing. Specifically, after k times of iterations, if
J (Pk) − J (Pk−1) < ε, we think the algorithm converges and
choose P∗ = Pk . To eliminate the effect of the magnitude of
J (P) onto the choice of the parameter ε, we use the relative
difference-based convergence criterion instead here, that is,
[J (Pk) − J (Pk−1)]

/
J (Pk) < ε.

The SRC-DP algorithm (Algorithm 1) is shown in Fig. 1.

B. Initial Solution of SRC-DP

The initial solution (seed) P0 can be chosen as an N × d
random matrix. The P0-determined transform y = PT

0 x is
generally referred to as a random projection (mapping) [16].
Here we would rather give a better initial solution P0 for the
SRC-DP algorithm, when all of the training samples form an
overcomplete dictionary in the input space.

If the sparsity is preserved under linear transform1, that is,
for each point yi j = PT xi j in the transformed space, the
corresponding sparse representation coefficient vector wi j is
exactly the same as that obtained in the input space. In other

1Actually, a similar assumption has been used in [9] and [6].

words, the sparse representation coefficient vector with respect
to xi j in the input space is supposed to be wi j . Under this
assumption, we can calculate wi j directly in the input space.
As a result, the two matrices SL

w and SL
b can be constructed

directly in the input space. We can thus get a close solution
by maximizing the criterion in (12). Specifically, the algorithm
for getting P0 is given below.

Initial SRC-DP algorithm (Algorithm 2).

1) Step 1. For each train sample xi j in the input space,
represent it using the remaining training samples and
calculate its corresponding sparse representation coeffi-
cient vector wi j by solving the L1 optimization problem.

2) Step 2. Construct the within-class and between-class
sparse scatter matrices SL

w and SL
b using (10) and (11).

Calculate the generalized eigenvectors ϕ1, . . . , ϕd of
SL

b , and SL
w corresponding to the d largest generalized

eigenvalues. Let P0 = (ϕ1, . . . , ϕd ).

Finally, note that the assumption that the sparsity is pre-
served under linear transform might not hold in practice.
Without this assumption, we have to appeal to the iterative
SRC-DP algorithm (Algorithm 1) to find the optimal projec-
tion matrix. This assumption is just to make the problem of
finding the optimal projection matrix simpler. Obviously, the
obtained optimal projection matrix P0 under this assumption
is not necessarily optimal in practice. But, it can be used as a
good initial solution of the iterative SRC-DP algorithm.

In addition, the initial SRC-DP algorithm (Algorithm 2) can
be looked at as a noniterative version of SRC-DP. The resulting
P0 can be used as an approximation of the optimal projection
matrix for feature extraction directly.

C. Convergence of the SRC-DP Algorithm

For convenience in discussing the convergence of our
algorithm, we first introduce an equivalent criterion of (12).
To this end, let us define the total sparse scatter matrix

SL
t = c

M(c−1)

∑

i, j

∑

s
[xi j − Bδs(wi j )][xi j − Bδs(wi j )]T (13)

where we know that SL
t = SL

b + SL
w . Then, when SL

w is
nonsingular, the criterion in (12) is equivalent to

Jt (P) = tr(PT SL
b P)

tr(PT SL
t P)

. (14)

It is easy to show that the column vectors of the projection
matrix that maximizes Jt (P) under the constraint PT SL

wP = I
are also the generalized eigenvectors of SL

b ϕ = λ SL
wϕ. There-

fore, in the SRC-DP algorithm (Algorithm 1), the criterion
J (P) can be replaced by Jt (P). In the following, we analyze
the convergence of Algorithm 1-based on the criterion Jt (P)
and draw the following conclusion:

Proposition 1: When SL
w is nonsingular, the criterion func-

tion of the SRC-DP algorithm converges to a local maximum.
Proof: The criterion function Jt (P) monotonically

increases. If Pk−1 and Pk are, respectively, the optimal projec-
tion matrices at the (k−1)th and the kth iteration step. We have
J (Pk−1)≤ J (Pk). Otherwise, the SRC-DP algorithm stops and
J (Pk−1) is the local maximum. As the criterion function Jt (P)
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has an upper bound when SL
w is nonsingular, i.e., Jt (P) < 1,

the criterion function of the SRC-DP algorithm must converge
to a local maximum.

As we can only show that the criterion function of the
SRC-DP algorithm converges to a local maximum, the solution
of our algorithm is theoretically locally-optimal. Therefore,
choosing a good initial solution for it is important. Algorithm 2
can provide such a solution.

Here, we should make a remark: that the criterion function
of the SRC-DP algorithm converges does not mean that the
solution of the algorithm converges to a unique matrix. In other
words, beginning with different initial solutions, the resulting
optimal projection matrices might be different, even if their
objective function converges to the same value. One possible
reason is: the value of criterion function is invariant under
arbitrary orthogonal transformations of a solution. If P* is the
optimal solution. Then, QP* is also the optimal solution, where
Q is a orthogonal matrix, because Jt (P∗) = Jt (QP∗) [or
J (P∗) = J (QP∗)]. Fortunately, the orthogonal transformation
of a projection matrix does not affect the classification result
of the SRC classifier. The justifications are two-fold: 1) an
additional orthogonal transformation of samples does not
change the solution of the L1 optimization problem in (2)
(i.e., sparse representation coefficients of samples); and 2) an
orthogonal transformation does not change the sample-to-class
distance defined in (3) in the classification rule. So, different
projection matrices with the same criterion function value will
result in the same classification performance.

D. Flexible Version of SRC-DP

In real-world pattern recognition problems, the data are
generally noisy or probably there are not enough training
samples for representing a testing sample exactly (i.e., the
dictionary formed by all training samples is not overcomplete).
To deal with these cases, instead of seeking the sparsest exact
representation of a test sample, we can seek the sparsest
representation that satisfies a given approximation error. That
is, the exact sparse representation model in (2) is replaced by

ŵ1 = arg min ||w||1, subject to ||Aw − y|| ≤ ε (15)

where ε is a given approximation error. To further provide
more flexibility to the variation of approximation error, we
would rather use the following Lasso model:

ŵ1 = arg min ||Aw − y||22 + δ||w||1 (16)

where δ > 0 is the regularization parameter. This model
balances the sparsity and approximation error adaptively by
modifying the regularization parameter.

If we use (16) instead of (2) to calculate the sparse represen-
tation coefficients, the derived sparse representation classifier
is called the flexible SRC (FSRC), and the derived SRC-DP
is named the FSRC-DP.

E. Connection to Other Sparse Feature Extraction Methods

Motivated by the idea of LPP [6] and sparse representation
[2], Qiao et al. [9] recently presented the SPP method. LPP
uses the nearest neighbors of a point in the input space to

characterize the locality and seeks a linear projection such that
the neighborhood relationship is preserved after the projection.
In contrast, SPP uses all training samples to sparsely represent
a point in the input space and look for a linear projection
such that the sparse reconstruction relationship is preserved.
Specifically, for each training sample yi j , let us represent it
sparsely by using the remaining training samples in the input
space. The sparse representation weights wi j can be obtained
by solving the L1 optimization problem in (2) [or (15) or (16)].
Assuming the sparse representation weights wi j is preserved,
one seeks a linear projection such that the total reconstruction
residual (error) criterion

∑

i, j

∥
∥
∥PT (xi j − Awi j )

∥
∥
∥

2

= tr

{

PT
[∑

i j

(xi j − Awi j )(xi j − Awi j )
T
]

P
}

(17)

is minimized under the constraint that PT (AAT )P = I.
The difference between SRC-DP and SPP can be specified

in the following.
SRC-DP is a supervised method whereas SPP is unsuper-

vised. SPP tries to minimize the total reconstruction residual,
which is not very meaningful for classification. So, SPP has no
direct connections to SRC or any other classifiers. In contrast,
SRC-DP aims to minimize the within-class reconstruction
residual in (5) and simultaneously to maximize the between-
class reconstruction residual in (6), which is consistent with
the classification rule of the SRC classifier. So, SRC-DP fits
for SRC very well.

SRC-DP models the separability by computing scatters of
samples in the transformed space, whereas SPP does not. The
modeling in the transformed space makes more sense because
the classifier practically works in such a space. On the other
hand, this modeling does not rely on the sparsity-preservation
assumption anymore. This is because the SRC-DP calculates
the sparse representation coefficients in the transformed space,
and uses these coefficients to form two scatter matrices. In
contrast, SPP performs sparse representation in the input
space and assume the sparse representation coefficients can
be preserved in the transformed space. This makes SRC-DP
more suitable for real-world problems. However, there is no
free dinner; modeling in transformed space brings an addi-
tional computational burden: the iterative SRC-DP algorithm
(Algorithm 1) is more time-consuming than the noniterative
SPP for training.

It is interesting for us to compare the two noniterative
algorithms: SPP and the initial SRC-DP (Algorithm 2). Both
methods have a same computational complexity, and share
a common sparsity-preservation assumption, i.e., using the
sparse representation weights computed in the input space in
the modeling procedure. The difference is: SPP is an unsu-
pervised method whereas the initial SRC-DP (Algorithm 2) is
supervised. The connection between the two methods is similar
to the connection between PCA and FLDA.

SRC-DP and SPP both utilize the between-sample sparse-
ness, i.e., representing one sample using the other samples
sparsely. The projection vector itself is not necessary sparse.
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In contrast, the SLDA [28] and S2DLDP [29] emphasize the
within-sample sparseness, yielding sparse projection vectors.
The sparse projection vectors are essentially to conduct feature
selection, and thus result in a set of interpretable features.

Zhang et al. [44] recently extended SPP and presented a
GODRSC. GODRSC and SRC-DP share a similar iterative
process of optimization. Their difference is: GODRSC is
unsupervised method, whereas our SRC-DP is supervised
method whose criterion is closely connected to the decision
rule of sparse representation classifier.

F. Dealing With the Rank-Deficiency Problem

Recalling that in solving the criterion function in (12) under
the constraint PT SL

wP = I, we require that the within-class
sparse scatter matrix SL

w is nonsingular (full-rank). Otherwise,
if SL

w is singular (rank-deficient), we cannot obtain its solution
by solving the generalized eigen-equation SL

b ϕ = λ SL
wϕ. So,

we need to study the rank of SL
w . To this end, let us formulate

SL
w alternatively by the following derivation. In the derivation,

the multiplier 1/M in the formula of SL
w is neglected for

convenience

SL
w =

∑

i, j

[xi j − Bδi (wi j )][(xi j − Bδi (wi j )]T

=
∑

i, j

xi j xT
i j − 2B

∑

i, j

δi (wi j )xT
i j

+B
[∑

i, j

δi (wi j )(δi (wi j ))
T
]

BT

= BBT − 2B�BT + B��T BT

= B(I − �)(I − �)T BT (18)

where B ∈ RN×M is the matrix formed by all training samples,
I is the M by M identity matrix, and the matrix � is defined
as

� =
[

δ1(w11), . . . , δ1(w1M1), δ2(w21), . . . ,

δ2(w2M1), . . . , δc(wc1), . . . , δ2(wcMc )

]

. (19)

From (18), we know that rank(SL
w) ≤ min{M, N}, where

N is the dimension of input space and M is the number
of training samples. Actually, following a similar derivation
procedure, we can reformulate SL

b and show that rank(SL
b ) ≤

min{M, N}.
In face recognition problems, the training sample size is

generally smaller than the dimension of image pixel space, we
will encounter two problems if we use the image pixel space
as the input space and directly implement SRC-DP in such
a space: 1) the within-class sparse scatter matrix SL

w is rank-
deficient when M<N , thus it is difficult to solve the criterion
in (12) directly in the iterative SRC-DP algorithm and 2) the
dictionary formed by all training samples is undercomplete,
so it becomes impossible to find the solution of the L1
optimization problem in (2). Thereby, Algorithm 2 cannot be
used to obtain an initial solution.

To address these two problems, we can use PCA for
dimensionality reduction prior to implementing SRC-DP. PCA
is probably the most popular method for data preprocessing
and always used to alleviate the rank-deficiency problems.
The FLDA [3], [4], LPP [6], and SPP [9] all use PCA as
a preprocessing step when applied to face recognition. For
consistency, we use PCA to reduce the dimension of face
images and then perform SRC-DP in the PCA-transformed
space.

G. Dealing With Occlusion or Corruption

The SRC method [2] has a built-in mechanism to deal
with occlusion or corruption, via solving an extended L1
optimization problem. Specifically, in occlusion or corruption,
the linear combination of the image y can be modified as

y = Aw + e = [A, I]
[

w
e

]

= Āw̄. (20)

If the error vector e is also sparse, we then can recover
the representation coefficients and the error vector together by
solving the following, extended L1 optimization problem

ŵ1 = arg min ||w̄||1, subject to Āw̄ = y. (21)

Now, let us consider how to extend our SRC-DP to deal
with occlusion or corruption in images. There might exist
some occluded or corrupted images in the training set. So,
in the training phase, for each training image, we leave it out
from the training set and use the remaining training samples
to linearly represent it using (20). By solving the problem in
(21), we get the optimal representation coefficient vector w.
Based on this w, we can construct SL

w and SL
b and perform

SRC-DP. This SRC-DP is called the extended SRC-DP, as it
uses the weights derived from the extended L1 optimization
problem in (21). In addition, based on this optimal weight
vector w, we obtain clean training images via yclean = Aw.

In the testing phase, for each testing image (which might
be occluded or corrupted), we use the obtained clean training
images to represent it using (20) and then get the clean testing
image by solving the problem in (21). We then perform feature
extraction upon the clean testing image using the projection
matrix of the extended SRC-DP.

The extended SRC-DP must be performed upon image
vectors as it involves a noise-removing process that must be
operated in image space. That is, we cannot use PCA as a
preliminary step before implementing the extended SRC-DP.
To address the rank-deficiency problem mentioned above,
we can choose to reduce the size of images directly by
downsampling.

IV. FACE RECOGNITION EXPERIMENTS AND ANALYSIS

A. Experiment Using the AR Database

The AR face [17] contains over 4000 color face images of
126 people, including frontal views of faces with different
facial expressions, lighting conditions, and occlusions. The
pictures of 120 individuals (65 men and 55 women) are taken
in two sessions (separated by two weeks) and each section
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TABLE I

MAXIMAL RECOGNITION RATES (%) OF PCA, FLDA, LPP, SPP, SLDA, S2DLDP, AND SRC-DP UNDER SRC CLASSIFIER, CORRESPONDING

DIMENSIONS AND CPU TIME (s) FOR TRAINING ON AR DATABASE

Method PCA FLDA LPP SPP SLDA S2DLDP SRC-DP (P0) SRC-DP

Recognition rate 69.0 78.9 70.0 75.2 81.4 73.1 82.4 83.3

Dimension 110 90 150 150 110 400 140 150

Training time (s) 11.37 15.94 20.06 689.95 5.907 × 105 49.18 697.25 6.110 × 103

(a) (b) (c) (d) (e) (f) (g)

(n) (o) (p) (q) (r) (s) (t)

Fig. 2. (a)–(g) and (n)–(t) Samples of cropped images of one person in AR
database.

contains 13 color images. Fourteen face images without occlu-
sions (each session containing seven) of these 120 individuals
are selected and used in our experiment. The face portion
of each image is manually cropped and then normalized to
50 × 45 pixels. The sample images of one person are shown
in Fig. 2. These images vary as follows: (a) neutral expression,
(b) smiling, (c) angry, (d) screaming, (e) left light on, (f) right
light on, (g) all sides light on, and (n)–(t) are taken under the
same conditions as Fig. 2(a)–(g).

Images from the first session [i.e., Fig. 2(a)–(g)] are
used for training, and images from the second session
[i.e., Fig. 2(n)–(t)] are used for testing. Thus, the total number
of training samples is 840. PCA (Eigenfaces [3]), Fisherfaces
(FLDA [4]), Laplacianfaces (LPP [6]), (SPP [9]), (SLDA
[28]), (S2DLDP [29]), and the proposed SRC-DP method
are, respectively, used for feature extraction. In SRC-DP for
all experiments, we use Algorithm 2 to obtain the initial
solution and then use Algorithm 1 to get the optimal pro-
jection matrix P. To avoid overfitting, we first perform PCA
and reduce the dimension to be 200 before implementing
FLDA, LPP, SPP, and SRC-DP. The K-nearest neighborhood
parameter K in LPP is chosen as l − 1, where l is training
sample size per class. Finally, the SRC classifier is employed
for classification. Here in SRC and SRC-DP, the MATLAB

function l1eq_pd from the l1-magic [18] is used to calculate
the sparse representation coefficients. For all feature extraction
methods mentioned, the SRC classifier is used for classifica-
tion. The recognition rate curve of each 1-D method (except
for S2DLDP) versus the variation of dimensions is shown
in Fig. 3.2 The maximal recognition rate of each method,
the corresponding dimension and training time are shown in
Table I. Additionally, we test the initial SRC-DP algorithm
(Algorithm 2), notated by the SRC-DP (P0) here, and show
its maximal recognition rate and the training time in Table I
for comparison.

2Note that it is not convenient for us to show the results of S2DLDP in
the figure because S2DLDP needs much more features to achieve its top
recognition rate.

20 40 60 80 100 120 140

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Dimension
R

ec
og

ni
tio

n 
ra

te

 

 

SRC-DP
LPP
PCA
FLDA
SPP
SLDA

Fig. 3. Recognition rate curve of each method versus variation of dimensions.

From Fig. 3 SRC-DP consistently outperforms PCA, FLDA,
LPP, SPP, and SLDA under the SRC classifier, when the
dimension is over 90. Table I shows that the maximal recog-
nition rate of SRC-DP is better than those of other methods.
In terms of the CPU time for training, SRC-DP is nine times
slower than SPP because it needs ten runs of iterations for
updating the projection matrix P. However, if we prefer a
lower computational time, we can apply the initialization
method of SRC-DP, Algorithm 2, to determine the initial
projection matrix P0 and use it directly for feature extraction.
Table I shows SRC-DP (P0) is only slightly weaker than
the iterative SRC-DP in performance, but the training time
is significantly reduced. SRC-DP (P0) is as fast as SPP for
training, yet remarkably improves the recognition performance
of SPP. SLDA also achieves a nice recognition result in this
experiment, but it is too computationally intensive for training.
It costs almost 100 times of the CPU time in contrast to
SRC-DP. S2DLDP is very fast but its performance is not very
satisfying.

We would evaluate the performance of random initialization
(random projection [2]). We use PCA to reduce the dimension
to 200 and then generate a 200 × 150 random matrix. Using
this matrix as projection matrix, the resulting features of
each image are input into SRC and obtain the classification
result. Fig. 4(a) shows the recognition rates corresponding to
ten randomly generated matrices. We then use each of these
ten random matrices as the initial solution P0 to input the
SRC-DP algorithm, and obtain the result of SRC-DP with ran-
dom initialization. The performance of SRC-DP corresponding
to each initial solution (random matrix) is shown in Fig. 4(a)
for comparison. The average recognition rate is shown



1030 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 24, NO. 7, JULY 2013

1 2 3 4 5 6 7 8 9 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No. of Projection

R
ec

og
ni

tio
n 

ra
te

SRC-DP
Random Projection

1 2 3 4 5 6 7 8 9 10 11
180

200

220

240

260

280

300

320

No. of Iteration

V
al

ue
 o

f t
he

 c
rit

er
io

n 
fu

nc
tio

n

Algorithm 2 generated Initial Solution
Random Matrix 1
Random Matrix 2

(a) (b)

Fig. 4. (a) Performance comparison: random projection versus SRC-DP. (b) Convergence of SRC-DP algorithm.

TABLE II

COMPARISONS OF RANDOM INITIALIZATION AND PROPOSED INITIALIZATION METHOD AND THEIR EFFECT ON FINAL SOLUTION

Method Random Initialization Average Proposed Initialization SRC-DP With Random Initialization Average SRC-DP

Recognition rate 56.5 ± 0.82 82.4 83.3 ± 0.29 83.3

TABLE III

MAXIMAL RECOGNITION RATES (%) OF PCA, FLDA, LPP, SPP, SLDA, S2DLDP, AND FSRC-DP UNDER FSRC CLASSIFIER AND CORRESPONDING

DIMENSIONS ON AR DATABASE

Method PCA FLDA LPP SPP SLDA S2DLDP FSRC-DP (P0) FSRC-DP

Recognition rate 72.7 79.4 70.6 78.8 81.7 77.6 82.9 83.9

Dimension 130 119 130 150 119 400 120 150

in Table II. The proposed initialization method of SRC-DP,
SRC-DP (P0), is significantly better than the random
initialization. However, an interesting finding is that different
initialization methods have little effect on the final result of
SRC-DP. SRC-DP with random initialization achieves almost
the same results as the SRC-DP with the proposed initializa-
tion method. In addition, Fig. 4(a) shows that the performance
of SRC-DP is also insensitive to variations of the initial
solution.

The convergence of the SRC-DP algorithm associated with
the initial P0 determined by Algorithm 2 and two randomly
generated matrices is shown in Fig. 4(b). It seems that the
criterion function of our algorithm converges well, indepen-
dent of the choice of initial solution. However, using the initial
P0 obtained by Algorithm 2 might speedup the convergence
as P0 yields a better criterion value. The convergence speed
of SRC-DP algorithm is fast; it always converges around ten
times of iterations.

Let us further examine the performance of the FSRC-DP. To
obtain the solution of the model in (16), we use the MATLAB

function l1_ls provided by Kim et al. [19]. The classification
result of FSRC-DP is shown in Table III. For comparison,
the results of PCA, FLDA, LPP, and SPP under the same
FSRC classifier are also shown in the table. Comparing with
the results in Table I, we see that using the flexible sparse
representation model in (16) instead of the exact model in (2)
can improve the performance of the SRC classifier and the
SRC-DP method.

TABLE IV

COMPARISONS OF IMAGE-BASED AND SRC-DP (OR SRC-DP)

FEATURE-BASED CLASSIFICATION

Method Image-Based
SRC

Image-Based
FSRC

SRC-DP FSRC-DP

Recognition
rate 67.3 78.6 83.3 83.9

Dimension 2250 2250 150 150

Testing
time (s) 8873.2 18374.1 466.5 546.5

To highlight the role of SRC-DP-based feature extraction,
we would like to compare the method with the image-
based SRC or FSRC, i.e., applying SRC or FSRC directly
on original image vectors (without any feature extraction
step), and show the results in Table IV. From Table IV, the
SRC-DP (or FSRC-DP) improves the performance of the
image-based SRC (or FSRC). In addition, the feature extrac-
tion method significantly accelerates the classification process,
as the SRC-DP only uses 150 features, which is much smaller
than the dimension of image space.

We would like to assess the performance of the six meth-
ods mentioned using the strategy of ten-fold cross valida-
tion. We randomly choose K samples from each class for
training, whereas the remaining samples for testing. Let K
vary from four to seven. For each K, we run the system
ten times and obtain ten different training and testing sam-
ple sets for performance evaluation. Here, for improving



YANG et al.: SRC-DP WITH APPLICATIONS TO FACE RECOGNITION 1031

Fig. 5. Illustration of average recognition rates (%) and std of PCA, FLDA,
LPP, SPP, S2DLDP, and FSRC-DP under FSRC classifier using ten-run test
on AR database.

(a)

(b)

(c)

Fig. 6. Examples of training and testing images of one person. (a) Artificial
corruption. (b) Artificial occlusion. (c) Real occlusion.

the computational efficiency, we use the efficient Euclidean
projections algorithm (the MATLAB function LeastR in the
SLEP package) [22], [23] to solve the Lasso model in (16).
The average recognition rates and the standard deviations
(std) of PCA, FLDA, LPP, SPP, S2DLDP, and FSRC-DP
under the FSRC classifier across ten tests are shown in Fig. 5.
The results in Fig. 5 are generally consistent with those in
Tables I and III. FSRC-DP outperforms others irrespective of
the variation of training sample size.

Finally, we compare the computational efficiency of the
proposed FSRC-DP (or SRC-DP) using three different sparse
representation algorithms: l1eq_pd from the l1-magic [18],
l1_ls [19], and LeastR from the SLEP package [23]. We
randomly choose seven samples from each class for training
and the remaining for testing. The average CPU time for
training and testing of ten runs are shown in Table V. The
average iteration times of SRC-DP using l1eq_pd is around
ten, whereas that of FSRC-DP using l1_ls or LeastR is around
five. From this table, LeastR is the most efficient one among
the three methods. It is ten times faster than l1_ls, and 35
times faster than l1eq_pd for training. It is almost 50 times
faster than the other two for testing. Therefore, using LeastR

TABLE V

AVERAGE CPU TIME FOR TRAINING AND TESTING OF FSRC-DP (OR

SRC-DP) WHEN NUMBER OF TRAINING SAMPLES PER CLASS IS SEVEN

USING DIFFERENT SPARSE REPRESENTATION ALGORITHMS

SR Algorithms l1eq_pd [18] l1_ls [19] LeastR [23]

Training time 6.072 × 103 1. 780 × 103 175.15

Testing time 479.86 492.43 9.87

TABLE VI

COMPARISONS OF IMAGE-BASED AND SRC-DP (OR SRC-DP)

FEATURE-BASED CLASSIFICATION IN CORRUPTION AND OCCLUSION

Method
Image-Based

Extended
SRC

Robust
PCA-Based

Extended SRC

Extended
SRC-DP

Artificial corruption 69.5 64.3 74.3

Artificial occlusion 57.4 49.8 59.4

Real occlusion 77.9 70.1 79.4

can significantly improve the computational efficiency of
FSRC-DP (or SRC-DP).

B. Experiment on Occluded/Corrupted Face Images

To evaluate the extended SRC-DP, we experiment on the AR
database with artificial corruption, artificial occlusion, and real
occlusion. Specifically, to generate artificial corruption, we use
the training and testing images of each person as adopted in the
experiment in Section IV-A, we randomly choose two training
images and two testing images, and add Gaussian white noise
(zero-mean and the variance is 0.03) into them. Similarly, to
generate artificial occlusion, we randomly choose two training
images and two testing images from each person and add a
black-square into them. The black-square is randomly located
in the face image. For real occlusion, we use one image with
glasses and one image with scarf in the training set and testing
set, respectively. Fig. 6 shows examples of training and testing
images of one person with corruption and occlusion.

We use the extended SRC-DP that is described in
Section III-G for feature extraction and the FSRC for clas-
sification. In comparison, we perform image-based extended
SRC, i.e., applying the extended SRC [by solving the extended
L1 optimization problem in (21)] to face image vectors
directly, and robust PCA [26]-based extended SRC, i.e., apply
the robust PCA [26] to remove corruption (corruption) in
training sample images and then use the extended SRC for
testing. The recognition results are shown in Table VI. The
extended SRC-DP-based feature extraction is more effective
for improving the performance of the extended SRC, irrespec-
tive of whether it is artificial corruption (occlusion) or real
occlusion. However, it should be mentioned that the extended
SRC-DP is more time-consuming than the extended SRC for
test, because it involves an operation in image space, i.e.,
solving the extended L1 optimization problem as it is done
in the extended SRC.

C. Experiment Using the Extended Yale B Database

The extended Yale B face database [20] contains 38 human
subjects under nine poses and 64 illumination conditions.
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Fig. 7. Samples of person under different illuminations in extended Yale B
face database.
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Fig. 8. Illustration of recognition rates of PCA, FLDA, LPP, SPP, S2DLDP,
and SRC-DP (or FSRC-DP) with variations of training sample size on
extended Yale B database. (a) Results under SRC. (b) Results under FSRC.

The 64 images of a subject in a particular pose are acquired at
camera frame rate of 30 frames/s, so there is only small change
in head pose and facial expression for those 64 images. All
frontal-face images marked with P00 are used, and each image
is resized to 42 × 48 pixels in our experiment. Some sample
images of one person are shown in Fig. 7.

In the first experiment, we use the first 8, 12, 16, 20, 24,
28, and 32 images per subject, respectively, for training, and
the remaining images for testing. PCA, FLDA, LPP, SPP,
S2DLDP, and the proposed SRC-DP method are used for
feature extraction. Before implementing FLDA, LPP, SPP,
and SRC-DP, we use PCA to reduce the dimension to be
100, 120, 140, 160, 180, 200, and 220 based on different num-
ber of training samples per class. Finally, the SRC classifier
is employed for classification. The recognition rate of each

TABLE VII

CPU TIME (s) FOR TRAINING WHEN NUMBER OF TRAINING SAMPLES

PER CLASS IS 16 ON YALE B DATABASE

PCA FLDA LPP SPP S2DLDP FSRC-DP

16.53 20.56 18.94 20.79 36.91 66.35

method is shown in Fig. 8(a). In contrast, the results of PCA,
FLDA, LPP, SPP, S2DLDP, and FSRC-DP under the FSRC
classifier are shown in Fig. 8(b).

Fig. 8 shows that when the number of training samples
per class is relative small (e.g., 8, 12, 16, and 20), SRC-DP
(or FSRC-DP) significantly outperforms PCA, FLDA, LPP,
SPP, and S2DLDP. When the training sample size becomes
large, SRC-DP is still slightly better than the other methods.
This makes sense for real-world face recognition, because
there are generally very limited face images available for
training in practice. By comparing Fig. 8(a) and (b), the
flexible sparse representation model can further improve the
performance of the SRC-DP method when the training sample
size is relative small. Table VII shows the CPU time for
training of each method when the number of training samples
per class is 16. FSRC-DP uses LeastR from the SLEP package
[23] for solving the Lasso model in (16). FSRC-DP needs three
iterations. In each iteration step, FSRC-DP is as fast as FLDA.

In the second experiment, we perform the ten-fold cross
validation by partitioning class samples in different ways. We
randomly choose K samples from each class for training,
whereas the remaining samples for testing. Here, we allow
K to vary from 8 to 32 with interval of four. For each K,
we perform ten runs of tests for each of the six methods:
PCA, FLDA, LPP, SPP, S2DLDP, and FSRC-DP. The average
recognition rates and the stds of each method under the FSRC
classifier across ten tests are shown in Fig. 9. Fig. 9 shows that
our method FSRC-DP consistently performs better than the
other methods, irrespective of the variation of training sample
size. In general, the performance difference between FSRC-DP
and others become less and less significant with the increase
of the training sample size K.

D. Experiment Using the PIE Database

The CMU PIE face database contains 68 subjects with
over 40 000 face images [24]. Images of each person are
taken across 13 different poses, under 43 different illumination
conditions, and with four different expressions. Here we use a
subset containing images of pose C05 (a nearly frontal pose)
of 68 persons, each with 49 images. All images are manually
aligned, cropped, and resized to be 64 × 64 pixels [25] in our
experiments.

Using the same methodology as adopted in the foregoing
experiment, we perform the ten-fold cross validation. We
randomly choose K = 10, 15, 20, and 25 images from
each class for training, and the remaining images for test.
For each K, we perform ten runs of tests for each of the
six methods mentioned under the FSRC classifier. The aver-
age recognition rates and the stds of each method across
ten tests are shown in Fig. 10. Fig. 10 shows that our
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Fig. 9. Illustration of average recognition rates (%) and std of PCA, FLDA, LPP, SPP, S2DLDP, and FSRC-DP under FSRC classifier using ten-run test on
extended Yale B database.

Fig. 10. Illustration of average recognition rates (%) and std of PCA, FLDA,
LPP, SPP, S2DLDP, and FSRC-DP under FSRC classifier using ten-run test
on PIE database.

TABLE VIII

AVERAGE CPU TIME (s) FOR TRAINING WHEN NUMBER OF TRAINING

SAMPLES PER CLASS IS 20 ON PIE DATABASE

PCA FLDA LPP SPP S2DLDP FSRC-DP

23.06 74.21 37.58 57.14 73.52 274.46

method FSRC-DP achieves the best results among all meth-
ods, irrespective of the variation of training sample size.
However, it should be mentioned that on this database, the
FLDA also performs very well. The performance difference
between FSRC-DP and FLDA seems not significant in the
average sense. Table VIII shows the CPU time for training
of each method when the number of training samples per
class is ten. FSRC-DP uses LeastR from the SLEP package
[23] for solving the Lasso model in (16). FSRC-DP needs
four iterations in average. In each iteration step, FSRC-DP
is as fast as FLDA. FSRC-DP is certainly more time-
consuming than FLDA as it needs iterations.

V. CONCLUSION

This paper presented a paradigm of linking dimension-
ality reduction to classification: seeking a low-dimensional
space of data in which the SRC achieved better perfor-
mance and became more efficient. The decision rule of SRC

was used to direct the design of a dimensionality reduction
method—SRC-DP. SRC-DP fitted SRC well in spirit, so the
SRC-DP-based feature extractor and the SRC can be seam-
lessly integrated into a face recognition system. Experiments
were done on the AR, the extended Yale B, and PIE face
image databases, and results demonstrated the performance
advantage of the proposed method over others.

If face images were corrupted or occluded, a prior
corruption (occlusion)-removing (or image recovering) step
was necessary before the application of SRC-DP. From
Wright et al. [2], we assumed the representation coefficients
and corrupted (occluded) pixels were both sparse and compute
them simultaneously by solving the extended sparse represen-
tation model. We embedded this method into our SRC-DP and
provided a mechanism to deal with occlusion or corruption in
training and testing images. Our future work is to build a
unified framework for corruption removing, feature extraction
and classification by combining sparse representation and low-
rank approximation.
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